wake-up-neo.net

So fügen Sie eine Linie hinzu, die am besten zum Streudiagramm passt

Momentan arbeite ich mit Pandas und Matplotlib, um einige Datenvisualisierungen durchzuführen, und ich möchte eine Linie mit der besten Übereinstimmung zu meinem Streudiagramm hinzufügen.

Hier ist mein Code:

import matplotlib
import matplotlib.pyplot as plt
import pandas as panda
import numpy as np

def PCA_scatter(filename):

   matplotlib.style.use('ggplot')

   data = panda.read_csv(filename)
   data_reduced = data[['2005', '2015']]

   data_reduced.plot(kind='scatter', x='2005', y='2015')
   plt.show()

PCA_scatter('file.csv')

Wie gehe ich vor?

5
JavascriptLoser

Mit Seaborn können Sie die ganze Anpassung und das Plot auf einen Schlag erledigen.

import pandas as pd
import seaborn as sns
data_reduced= pd.read_csv('fake.txt',sep='\s+')
sns.regplot(data_reduced['2005'],data_reduced['2015'])

 regressionplot

8
Robert Calhoun

Sie können np.polyfit() und np.poly1d() verwenden. Schätzen Sie ein Polynom ersten Grades mit denselben x-Werten und fügen Sie es dem ax-Objekt hinzu, das mit dem .scatter()-Diagramm erstellt wurde. An einem Beispiel:

import numpy as np

     2005   2015
0   18882  21979
1    1161   1044
2     482    558
3    2105   2471
4     427   1467
5    2688   2964
6    1806   1865
7     711    738
8     928   1096
9    1084   1309
10    854    901
11    827   1210
12   5034   6253

Schätzung des Polynoms ersten Grades:

z = np.polyfit(x=df.loc[:, 2005], y=df.loc[:, 2015], deg=1)
p = np.poly1d(z)
df['trendline'] = p(df.loc[:, 2005])

     2005   2015     trendline
0   18882  21979  21989.829486
1    1161   1044   1418.214712
2     482    558    629.990208
3    2105   2471   2514.067336
4     427   1467    566.142863
5    2688   2964   3190.849200
6    1806   1865   2166.969948
7     711    738    895.827339
8     928   1096   1147.734139
9    1084   1309   1328.828428
10    854    901   1061.830437
11    827   1210   1030.487195
12   5034   6253   5914.228708

und Grundstück:

ax = df.plot.scatter(x=2005, y=2015)
df.set_index(2005, inplace=True)
df.trendline.sort_index(ascending=False).plot(ax=ax)
plt.gca().invert_xaxis()

Bekommen:

 enter image description here

Liefert auch die Liniengleichung:

'y={0:.2f} x + {1:.2f}'.format(z[0],z[1])

y=1.16 x + 70.46
5
Stefan

Eine weitere Option (mit np.linalg.lstsq ):

# generate some fake data
N = 50
x = np.random.randn(N, 1)
y = x*2.2 + np.random.randn(N, 1)*0.4 - 1.8
plt.axhline(0, color='r', zorder=-1)
plt.axvline(0, color='r', zorder=-1)
plt.scatter(x, y)

# fit least-squares with an intercept
w = np.linalg.lstsq(np.hstack((x, np.ones((N,1)))), y)[0]
xx = np.linspace(*plt.gca().get_xlim()).T

# plot best-fit line
plt.plot(xx, w[0]*xx + w[1], '-k')

 best-fit line

2
Alex Williams