wake-up-neo.net

Die Dekompilierungszeichenfolge kann bequem in C++ deklariert werden

Die Möglichkeit, Strings während der Kompilierzeit in C++ erstellen und bearbeiten zu können, hat mehrere nützliche Anwendungen. Obwohl es möglich ist, Zeichenketten zur Kompilierungszeit in C++ zu erstellen, ist der Prozess sehr umständlich, da die Zeichenfolge als variadische Folge von Zeichen deklariert werden muss, z.

using str = sequence<'H', 'e', 'l', 'l', 'o', ', ', 'w', 'o', 'r', 'l', 'd', '!'>;

Operationen wie String-Verkettung, Extraktion von Teilstrings und viele andere können problemlos als Operationen für Zeichenfolgen implementiert werden. Ist es möglich, Zeichenketten zur Kompilierzeit bequemer zu deklarieren? Wenn nicht, gibt es in den Werken einen Vorschlag, der eine bequeme Deklaration von Kompilierzeit-Strings ermöglicht?

Warum bestehende Ansätze scheitern

Im Idealfall möchten wir die Zeichenfolgen für die Kompilierung wie folgt deklarieren:

// Approach 1
using str1 = sequence<"Hello, world!">;

oder mit benutzerdefinierten Literalen

// Approach 2
constexpr auto str2 = "Hello, world!"_s;

wobei decltype(str2) einen constexpr-Konstruktor haben würde. Eine unübersichtliche Version von Ansatz 1 kann implementiert werden, wobei die folgenden Vorteile genutzt werden:

template <unsigned Size, const char Array[Size]>
struct foo;

Das Array müsste jedoch über eine externe Verknüpfung verfügen. Um Ansatz 1 zum Laufen zu bringen, müssten wir so etwas schreiben:

/* Implementation of array to sequence goes here. */

constexpr const char str[] = "Hello, world!";

int main()
{
    using s = string<13, str>;
    return 0;
}

Es ist unnötig zu erwähnen, dass dies sehr unbequem ist. Ansatz 2 ist eigentlich nicht umsetzbar. Wenn wir einen (constexpr) Literaloperator deklarieren würden, wie würden wir dann den Rückgabetyp angeben? Da der Operator eine variable Zeichenfolge zurückgeben muss, müssen Sie den const char*-Parameter verwenden, um den Rückgabetyp anzugeben:

constexpr auto
operator"" _s(const char* s, size_t n) -> /* Some metafunction using `s` */

Dies führt zu einem Kompilierungsfehler, da s keine constexpr ist. Wenn Sie versuchen, dies zu umgehen, indem Sie Folgendes tun, hilft das nicht viel.

template <char... Ts>
constexpr sequence<Ts...> operator"" _s() { return {}; }

Der Standard schreibt vor, dass dieses spezielle Literal-Operator-Formular für Ganzzahl- und Fließkommatypen reserviert ist. Während 123_s funktionieren würde, abc_s nicht. Was ist, wenn wir benutzerdefinierte Literale gemeinsam aufgeben und nur eine reguläre constexpr-Funktion verwenden?

template <unsigned Size>
constexpr auto
string(const char (&array)[Size]) -> /* Some metafunction using `array` */

Wie zuvor stoßen wir auf das Problem, dass das Array, jetzt ein Parameter der constexpr-Funktion, selbst kein constexpr-Typ mehr ist.

Ich glaube, es sollte möglich sein, ein C-Präprozessor-Makro zu definieren, das eine Zeichenfolge und die Größe der Zeichenfolge als Argumente verwendet und eine Folge aus den Zeichen in der Zeichenfolge zurückgibt (mit BOOST_PP_FOR, Stringification, Array-Subskripten und dergleichen). Ich habe jedoch nicht die Zeit (oder nicht genug Interesse), um ein solches Makro zu implementieren =)

125
void-pointer

Ich habe nichts gefunden, das der Eleganz von Scott Schurrs str_const entspricht, der auf C++ Now 2012 präsentiert wird. Es erfordert jedoch constexpr.

So können Sie es verwenden und was es kann:

int
main()
{
    constexpr str_const my_string = "Hello, world!";
    static_assert(my_string.size() == 13, "");
    static_assert(my_string[4] == 'o', "");
    constexpr str_const my_other_string = my_string;
    static_assert(my_string == my_other_string, "");
    constexpr str_const world(my_string, 7, 5);
    static_assert(world == "world", "");
//  constexpr char x = world[5]; // Does not compile because index is out of range!
}

Es wird nicht viel cooler als die Überprüfung der Compile-Zeitbereiche!

Sowohl die Verwendung als auch die Implementierung sind makrosfrei. Und es gibt keine künstliche Begrenzung der Stringgröße. Ich würde die Implementierung hier posten, aber ich respektiere das implizite Urheberrecht von Scott. Die Implementierung erfolgt auf einer einzigen Folie seiner Präsentation, auf die oben verwiesen wird.

116
Howard Hinnant

Ich glaube, es sollte möglich sein, ein C-Präprozessor-Makro zu definieren, das nimmt einen String und die Größe des Strings als Argumente und gibt eine .__ zurück. Sequenz bestehend aus den Zeichen in der Zeichenfolge (mit BOOST_PP_FOR, Stringification, Array-Subskripten und dergleichen) . Ich habe jedoch keine Zeit (oder nicht genug Interesse), um solche .__ zu implementieren. ein Makro

sie können dies ohne Boost implementieren, indem Sie ein sehr einfaches Makro und einige C++ 11-Features verwenden:

  1. lambdas variadisch 
  2. vorlagen 
  3. generalisierte konstante Ausdrücke
  4. nicht statische Datenelementinitialisierer 
  5. einheitliche Initialisierung

(die letzten beiden sind hier nicht unbedingt erforderlich)

  1. wir müssen in der Lage sein, eine variadische Vorlage mit vom Benutzer gelieferten Indices von 0 bis N instanziieren zu können - ein Werkzeug, das zum Beispiel nützlich ist, um Tuple in das Argument der variadischen Vorlagenfunktion zu erweitern (siehe Fragen: Wie erweitere ich einen Tuple in die Argumente der variadischen Vorlagenfunktion ?
    "Tupfen auspacken", um einen passenden Funktionszeiger aufzurufen )

    namespace  variadic_toolbox
    {
        template<unsigned  count, 
            template<unsigned...> class  meta_functor, unsigned...  indices>
        struct  apply_range
        {
            typedef  typename apply_range<count-1, meta_functor, count-1, indices...>::result  result;
        };
    
        template<template<unsigned...> class  meta_functor, unsigned...  indices>
        struct  apply_range<0, meta_functor, indices...>
        {
            typedef  typename meta_functor<indices...>::result  result;
        };
    }
    
  2. definieren Sie dann eine variadische Vorlage namens string mit dem Nichttyp parameter char:

    namespace  compile_time
    {
        template<char...  str>
        struct  string
        {
            static  constexpr  const char  chars[sizeof...(str)+1] = {str..., '\0'};
        };
    
        template<char...  str>
        constexpr  const char  string<str...>::chars[sizeof...(str)+1];
    }
    
  3. jetzt der interessanteste Teil - Zeichenliterale in String template zu übergeben: template:

    namespace  compile_time
    {
        template<typename  lambda_str_type>
        struct  string_builder
        {
            template<unsigned... indices>
            struct  produce
            {
                typedef  string<lambda_str_type{}.chars[indices]...>  result;
            };
        };
    }
    
    #define  CSTRING(string_literal)                                                        \
        []{                                                                                 \
            struct  constexpr_string_type { const char * chars = string_literal; };         \
            return  variadic_toolbox::apply_range<sizeof(string_literal)-1,                 \
                compile_time::string_builder<constexpr_string_type>::produce>::result{};    \
        }()
    

eine einfache Verkettungsdemonstration zeigt die Verwendung:

    namespace  compile_time
    {
        template<char...  str0, char...  str1>
        string<str0..., str1...>  operator*(string<str0...>, string<str1...>)
        {
            return  {};
        }
    }

    int main()
    {
        auto  str0 = CSTRING("hello");
        auto  str1 = CSTRING(" world");

        std::cout << "runtime concat: " <<  str_hello.chars  << str_world.chars  << "\n <=> \n";
        std::cout << "compile concat: " <<  (str_hello * str_world).chars  <<  std::endl;
    }

https://ideone.com/8Ft2xu

39
user1115339

Bearbeiten: Wie Howard Hinnant (und ich etwas in meinem Kommentar zum OP) darauf hingewiesen hat, benötigen Sie möglicherweise keinen Typ mit jedem einzelnen Zeichen der Zeichenfolge als einzelnes Vorlagenargument .. _ Wenn Sie dies benötigen, gibt es ein Makro -freie Lösung unten.

Es gibt einen Trick, den ich beim Kompilieren mit Strings gefunden habe. Es muss neben der "Vorlagenzeichenfolge" ein anderer Typ eingeführt werden. Innerhalb von Funktionen können Sie jedoch den Umfang dieses Typs einschränken.

Es werden keine Makros verwendet, sondern einige C++ 11-Funktionen.

#include <iostream>

// helper function
constexpr unsigned c_strlen( char const* str, unsigned count = 0 )
{
    return ('\0' == str[0]) ? count : c_strlen(str+1, count+1);
}

// helper "function" struct
template < char t_c, char... tt_c >
struct rec_print
{
    static void print()
    {
        std::cout << t_c;
        rec_print < tt_c... > :: print ();
    }
};
    template < char t_c >
    struct rec_print < t_c >
    {
        static void print() { std::cout << t_c; }
    };


// destination "template string" type
template < char... tt_c >
struct exploded_string
{
    static void print()
    {
        rec_print < tt_c... > :: print();
    }
};

// struct to explode a `char const*` to an `exploded_string` type
template < typename T_StrProvider, unsigned t_len, char... tt_c >
struct explode_impl
{
    using result =
        typename explode_impl < T_StrProvider, t_len-1,
                                T_StrProvider::str()[t_len-1],
                                tt_c... > :: result;
};

    template < typename T_StrProvider, char... tt_c >
    struct explode_impl < T_StrProvider, 0, tt_c... >
    {
         using result = exploded_string < tt_c... >;
    };

// syntactical sugar
template < typename T_StrProvider >
using explode =
    typename explode_impl < T_StrProvider,
                            c_strlen(T_StrProvider::str()) > :: result;


int main()
{
    // the trick is to introduce a type which provides the string, rather than
    // storing the string itself
    struct my_str_provider
    {
        constexpr static char const* str() { return "hello world"; }
    };

    auto my_str = explode < my_str_provider >{};    // as a variable
    using My_Str = explode < my_str_provider >;    // as a type

    my_str.print();
}
17
dyp

Wenn Sie Boost Solution nicht verwenden möchten, können Sie ein einfaches Makro erstellen, das eine ähnliche Aufgabe erfüllt:

#define MACRO_GET_1(str, i) \
    (sizeof(str) > (i) ? str[(i)] : 0)

#define MACRO_GET_4(str, i) \
    MACRO_GET_1(str, i+0),  \
    MACRO_GET_1(str, i+1),  \
    MACRO_GET_1(str, i+2),  \
    MACRO_GET_1(str, i+3)

#define MACRO_GET_16(str, i) \
    MACRO_GET_4(str, i+0),   \
    MACRO_GET_4(str, i+4),   \
    MACRO_GET_4(str, i+8),   \
    MACRO_GET_4(str, i+12)

#define MACRO_GET_64(str, i) \
    MACRO_GET_16(str, i+0),  \
    MACRO_GET_16(str, i+16), \
    MACRO_GET_16(str, i+32), \
    MACRO_GET_16(str, i+48)

#define MACRO_GET_STR(str) MACRO_GET_64(str, 0), 0 //guard for longer strings

using seq = sequence<MACRO_GET_STR("Hello world!")>;

das einzige Problem ist eine feste Größe von 64 Zeichen (plus zusätzliche Null). Es kann jedoch je nach Ihren Bedürfnissen leicht geändert werden.

8
Yankes

Ich glaube, es sollte möglich sein, ein C-Präprozessor-Makro zu definieren, das eine Zeichenfolge und die Größe der Zeichenfolge als Argumente verwendet und eine Folge aus den Zeichen in der Zeichenfolge zurückgibt.

Es gibt einen Artikel: Verwenden von Strings in C++ - Vorlagenmetaprogrammen von Abel Sinkovics und Dave Abrahams.

Es hat einige Verbesserungen gegenüber Ihrer Vorstellung von Makro + BOOST_PP_REPEAT zur Folge - es ist keine explizite Größe an das Makro zu übergeben. Kurz gesagt, es basiert auf einer festen Obergrenze für die Stringgröße und dem "String Overrun-Schutz":

template <int N>
constexpr char at(char const(&s)[N], int i)
{
    return i >= N ? '\0' : s[i];
}

plus bedingtes boost :: mpl :: Push_back.


Ich habe meine akzeptierte Antwort in die Lösung von Yankes geändert, da sie dieses spezifische Problem löst und dies elegant ohne die Verwendung von Constexpr oder komplexem Präprozessorcode tut.

Wenn Sie nachfolgende Nullen akzeptieren, handgeschriebene Makroschleifen, 2x -Auslöschung der Zeichenfolge im erweiterten Makro, und keinen Boost haben - dann stimme ich zu - es ist besser. Mit Boost wären es jedoch nur drei Zeilen:

LIVE DEMO

#include <boost/preprocessor/repetition/repeat.hpp>
#define GET_STR_AUX(_, i, str) (sizeof(str) > (i) ? str[(i)] : 0),
#define GET_STR(str) BOOST_PP_REPEAT(64,GET_STR_AUX,str) 0
6
Evgeny Panasyuk

Ein Kollege forderte mich auf, zur Kompilierzeit Zeichenfolgen im Speicher zu verketten. Es beinhaltet auch das Instantiieren einzelner Strings zur Kompilierzeit. Die vollständige Code-Liste ist hier:

//Arrange strings contiguously in memory at compile-time from string literals.
//All free functions prefixed with "my" to faciliate grepping the symbol tree
//(none of them should show up).

#include <iostream>

using std::size_t;

//wrapper for const char* to "allocate" space for it at compile-time
template<size_t N>
struct String {
    //C arrays can only be initialised with a comma-delimited list
    //of values in curly braces. Good thing the compiler expands
    //parameter packs into comma-delimited lists. Now we just have
    //to get a parameter pack of char into the constructor.
    template<typename... Args>
    constexpr String(Args... args):_str{ args... } { }
    const char _str[N];
};

//takes variadic number of chars, creates String object from it.
//i.e. myMakeStringFromChars('f', 'o', 'o', '\0') -> String<4>::_str = "foo"
template<typename... Args>
constexpr auto myMakeStringFromChars(Args... args) -> String<sizeof...(Args)> {
    return String<sizeof...(args)>(args...);
}

//This struct is here just because the iteration is going up instead of
//down. The solution was to mix traditional template metaprogramming
//with constexpr to be able to terminate the recursion since the template
//parameter N is needed in order to return the right-sized String<N>.
//This class exists only to dispatch on the recursion being finished or not.
//The default below continues recursion.
template<bool TERMINATE>
struct RecurseOrStop {
    template<size_t N, size_t I, typename... Args>
    static constexpr String<N> recurseOrStop(const char* str, Args... args);
};

//Specialisation to terminate recursion when all characters have been
//stripped from the string and converted to a variadic template parameter pack.
template<>
struct RecurseOrStop<true> {
    template<size_t N, size_t I, typename... Args>
    static constexpr String<N> recurseOrStop(const char* str, Args... args);
};

//Actual function to recurse over the string and turn it into a variadic
//parameter list of characters.
//Named differently to avoid infinite recursion.
template<size_t N, size_t I = 0, typename... Args>
constexpr String<N> myRecurseOrStop(const char* str, Args... args) {
    //template needed after :: since the compiler needs to distinguish
    //between recurseOrStop being a function template with 2 paramaters
    //or an enum being compared to N (recurseOrStop < N)
    return RecurseOrStop<I == N>::template recurseOrStop<N, I>(str, args...);
}

//implementation of the declaration above
//add a character to the end of the parameter pack and recurse to next character.
template<bool TERMINATE>
template<size_t N, size_t I, typename... Args>
constexpr String<N> RecurseOrStop<TERMINATE>::recurseOrStop(const char* str,
                                                            Args... args) {
    return myRecurseOrStop<N, I + 1>(str, args..., str[I]);
}

//implementation of the declaration above
//terminate recursion and construct string from full list of characters.
template<size_t N, size_t I, typename... Args>
constexpr String<N> RecurseOrStop<true>::recurseOrStop(const char* str,
                                                       Args... args) {
    return myMakeStringFromChars(args...);
}

//takes a compile-time static string literal and returns String<N> from it
//this happens by transforming the string literal into a variadic paramater
//pack of char.
//i.e. myMakeString("foo") -> calls myMakeStringFromChars('f', 'o', 'o', '\0');
template<size_t N>
constexpr String<N> myMakeString(const char (&str)[N]) {
    return myRecurseOrStop<N>(str);
}

//Simple Tuple implementation. The only reason std::Tuple isn't being used
//is because its only constexpr constructor is the default constructor.
//We need a constexpr constructor to be able to do compile-time shenanigans,
//and it's easier to roll our own Tuple than to edit the standard library code.

//use MyTupleLeaf to construct MyTuple and make sure the order in memory
//is the same as the order of the variadic parameter pack passed to MyTuple.
template<typename T>
struct MyTupleLeaf {
    constexpr MyTupleLeaf(T value):_value(value) { }
    T _value;
};

//Use MyTupleLeaf implementation to define MyTuple.
//Won't work if used with 2 String<> objects of the same size but this
//is just a toy implementation anyway. Multiple inheritance guarantees
//data in the same order in memory as the variadic parameters.
template<typename... Args>
struct MyTuple: public MyTupleLeaf<Args>... {
    constexpr MyTuple(Args... args):MyTupleLeaf<Args>(args)... { }
};

//Helper function akin to std::make_Tuple. Needed since functions can deduce
//types from parameter values, but classes can't.
template<typename... Args>
constexpr MyTuple<Args...> myMakeTuple(Args... args) {
    return MyTuple<Args...>(args...);
}

//Takes a variadic list of string literals and returns a Tuple of String<> objects.
//These will be contiguous in memory. Trailing '\0' adds 1 to the size of each string.
//i.e. ("foo", "foobar") -> (const char (&arg1)[4], const char (&arg2)[7]) params ->
//                       ->  MyTuple<String<4>, String<7>> return value
template<size_t... Sizes>
constexpr auto myMakeStrings(const char (&...args)[Sizes]) -> MyTuple<String<Sizes>...> {
    //expands into myMakeTuple(myMakeString(arg1), myMakeString(arg2), ...)
    return myMakeTuple(myMakeString(args)...);
}

//Prints Tuple of strings
template<typename T> //just to avoid typing the Tuple type of the strings param
void printStrings(const T& strings) {
    //No std::get or any other helpers for MyTuple, so intead just cast it to
    //const char* to explore its layout in memory. We could add iterators to
    //myTuple and do "for(auto data: strings)" for ease of use, but the whole
    //point of this exercise is the memory layout and nothing makes that clearer
    //than the ugly cast below.
    const char* const chars = reinterpret_cast<const char*>(&strings);
    std::cout << "Printing strings of total size " << sizeof(strings);
    std::cout << " bytes:\n";
    std::cout << "-------------------------------\n";

    for(size_t i = 0; i < sizeof(strings); ++i) {
        chars[i] == '\0' ? std::cout << "\n" : std::cout << chars[i];
    }

    std::cout << "-------------------------------\n";
    std::cout << "\n\n";
}

int main() {
    {
        constexpr auto strings = myMakeStrings("foo", "foobar",
                                               "strings at compile time");
        printStrings(strings);
    }

    {
        constexpr auto strings = myMakeStrings("Some more strings",
                                               "just to show Jeff to not try",
                                               "to challenge C++11 again :P",
                                               "with more",
                                               "to show this is variadic");
        printStrings(strings);
    }

    std::cout << "Running 'objdump -t |grep my' should show that none of the\n";
    std::cout << "functions defined in this file (except printStrings()) are in\n";
    std::cout << "the executable. All computations are done by the compiler at\n";
    std::cout << "compile-time. printStrings() executes at run-time.\n";
}
3
Átila Neves

Hier ist eine prägnante C++ 14-Lösung zum Erstellen eines std :: Tuple <char ...> für jeden übergebenen String zur Kompilierzeit.

#include <Tuple>
#include <utility>


namespace detail {
        template <std::size_t ... indices>
        decltype(auto) build_string(const char * str, std::index_sequence<indices...>) {
                return std::make_Tuple(str[indices]...);
        }
}

template <std::size_t N>
constexpr decltype(auto) make_string(const char(&str)[N]) {
        return detail::build_string(str, std::make_index_sequence<N>());
}

auto HelloStrObject = make_string("hello");

Und hier ist eine zum Erstellen eines eindeutigen Typs für die Kompilierungszeit, der vom anderen Makro-Postern abgeschnitten wurde.

#include <utility>

template <char ... Chars>
struct String {};

template <typename Str, std::size_t ... indices>
decltype(auto) build_string(std::index_sequence<indices...>) {
        return String<Str().chars[indices]...>();
}

#define make_string(str) []{\
        struct Str { const char * chars = str; };\
        return build_string<Str>(std::make_index_sequence<sizeof(str)>());\
}()

auto HelloStrObject = make_string("hello");

Es ist wirklich schade, dass benutzerdefinierte Literale noch nicht verwendet werden können.

3
kacey

Beim Spielen mit der Boost-Hana-Map bin ich auf diesen Thread gestoßen. Da keine der Antworten mein Problem löste, habe ich eine andere Lösung gefunden, die ich hier hinzufügen möchte, da sie möglicherweise für andere hilfreich sein könnte.

Mein Problem war, dass der Compiler bei Verwendung der Boost-Hana-Map mit Hana-Strings immer noch Laufzeitcode generiert hat (siehe unten). Der Grund war offensichtlich, dass zum Abfragen der Karte zur Kompilierungszeit constexpr sein muss. Dies ist nicht möglich, da das Makro BOOST_HANA_STRING ein Lambda generiert, das nicht im Kontext constexpr verwendet werden kann. Auf der anderen Seite benötigt die Karte Strings mit unterschiedlichem Inhalt, um unterschiedliche Typen zu haben.

Da die Lösungen in diesem Thread entweder ein Lambda verwenden oder keine unterschiedlichen Typen für verschiedene Inhalte bereitstellen, war der folgende Ansatz hilfreich. Außerdem wird die hackige str<'a', 'b', 'c'>-Syntax vermieden. 

Die Grundidee ist, eine Version von Scott Schurrs str_const auf den Hash der Zeichen zu kopieren. Es ist c++14, aber c++11 sollte mit einer rekursiven Implementierung der crc32-Funktion möglich sein (siehe hier ).

// str_const from https://github.com/boostcon/cppnow_presentations_2012/blob/master/wed/schurr_cpp11_tools_for_class_authors.pdf?raw=true

    #include <string>

template<unsigned Hash>  ////// <- This is the difference...
class str_const2 { // constexpr string
private:
    const char* const p_;
    const std::size_t sz_;
public:
    template<std::size_t N>
    constexpr str_const2(const char(&a)[N]) : // ctor
        p_(a), sz_(N - 1) {}


    constexpr char operator[](std::size_t n) const { // []
        return n < sz_ ? p_[n] :
            throw std::out_of_range("");
    }

    constexpr std::size_t size() const { return sz_; } // size()

    constexpr const char* const data() const {
        return p_;
    }
};

// Crc32 hash function. Non-recursive version of https://stackoverflow.com/a/23683218/8494588
static constexpr unsigned int crc_table[256] = {
    0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
    0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
    0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
    0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
    0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
    0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
    0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
    0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
    0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
    0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
    0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
    0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
    0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
    0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
    0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
    0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
    0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
    0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
    0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
    0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
    0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
    0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
    0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
    0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
    0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
    0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
    0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
    0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
    0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
    0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
    0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
    0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
    0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
    0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
    0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
    0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
    0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
    0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
    0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
    0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
    0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
    0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
    0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};

template<size_t N>
constexpr auto crc32(const char(&str)[N])
{
    unsigned int prev_crc = 0xFFFFFFFF;
    for (auto idx = 0; idx < sizeof(str) - 1; ++idx)
        prev_crc = (prev_crc >> 8) ^ crc_table[(prev_crc ^ str[idx]) & 0xFF];
    return prev_crc ^ 0xFFFFFFFF;
}

// Conveniently create a str_const2
#define CSTRING(text) str_const2 < crc32( text ) >( text )

// Conveniently create a hana type_c<str_const2> for use in map
#define CSTRING_TYPE(text) hana::type_c<decltype(str_const2 < crc32( text ) >( text ))>

Verwendungszweck:

#include <boost/hana.hpp>

#include <boost/hana/map.hpp>
#include <boost/hana/pair.hpp>
#include <boost/hana/type.hpp>

namespace hana = boost::hana;

int main() {

    constexpr auto s2 = CSTRING("blah");

    constexpr auto X = hana::make_map(
        hana::make_pair(CSTRING_TYPE("aa"), 1)
    );    
    constexpr auto X2 = hana::insert(X, hana::make_pair(CSTRING_TYPE("aab"), 2));   
    constexpr auto ret = X2[(CSTRING_TYPE("aab"))];
    return ret;
}

Der resultierende Assembler-Code mit clang-cl 5.0 lautet:

012A1370  mov         eax,2  
012A1375  ret  
2
florestan

Niemand scheint meine andere Antwort zu mögen: - <. Ich zeige hier also, wie man einen str_const in einen echten Typ konvertiert:

#include <iostream>
#include <utility>

// constexpr string with const member functions
class str_const { 
private:
    const char* const p_;
    const std::size_t sz_;
public:

    template<std::size_t N>
    constexpr str_const(const char(&a)[N]) : // ctor
    p_(a), sz_(N-1) {}

    constexpr char operator[](std::size_t n) const { 
        return n < sz_ ? p_[n] :
        throw std::out_of_range("");
    }

    constexpr std::size_t size() const { return sz_; } // size()
};


template <char... letters>
struct string_t{
    static char const * c_str() {
        static constexpr char string[]={letters...,'\0'};
        return string;
    }
};

template<str_const const& str,std::size_t... I>
auto constexpr expand(std::index_sequence<I...>){
    return string_t<str[I]...>{};
}

template<str_const const& str>
using string_const_to_type = decltype(expand<str>(std::make_index_sequence<str.size()>{}));

constexpr str_const hello{"Hello World"};
using hello_t = string_const_to_type<hello>;

int main()
{
//    char c = hello_t{};        // Compile error to print type
    std::cout << hello_t::c_str();
    return 0;
}

Kompiliert mit clang ++ - stdlib = libc ++ - std = c ++ 14 (clang 3.7)

2
Niceman

basierend auf der Idee von Howard Hinnant können Sie eine literale Klasse erstellen, die zwei Literale zusammenfügt.

template<int>
using charDummy = char;

template<int... dummy>
struct F
{
    const char table[sizeof...(dummy) + 1];
    constexpr F(const char* a) : table{ str_at<dummy>(a)..., 0}
    {

    }
    constexpr F(charDummy<dummy>... a) : table{ a..., 0}
    {

    }

    constexpr F(const F& a) : table{ a.table[dummy]..., 0}
    {

    }

    template<int... dummyB>
    constexpr F<dummy..., sizeof...(dummy)+dummyB...> operator+(F<dummyB...> b)
    {
        return { this->table[dummy]..., b.table[dummyB]... };
    }
};

template<int I>
struct get_string
{
    constexpr static auto g(const char* a) -> decltype( get_string<I-1>::g(a) + F<0>(a + I))
    {
        return get_string<I-1>::g(a) + F<0>(a + I);
    }
};

template<>
struct get_string<0>
{
    constexpr static F<0> g(const char* a)
    {
        return {a};
    }
};

template<int I>
constexpr auto make_string(const char (&a)[I]) -> decltype( get_string<I-2>::g(a) )
{
    return get_string<I-2>::g(a);
}

constexpr auto a = make_string("abc");
constexpr auto b = a+ make_string("def"); // b.table == "abcdef" 
2
Yankes

Ihr Ansatz Nr. 1 ist der richtige.

Das Array müsste jedoch über eine externe Verknüpfung verfügen. Damit Ansatz 1 funktioniert, müssen wir etwa Folgendes schreiben: constexpr const char str [] = "Hallo, Welt!";

Nein, nicht richtig. Dies kompiliert mit clang und gcc. Ich hoffe auf den Standard C++ 11, aber ich bin kein Sprachlehrer. 

#include <iostream>

template <char... letters>
struct string_t{
    static char const * c_str() {
        static constexpr char string[]={letters...,'\0'};
        return string;
    }
};

// just live with it, but only once
using Hello_World_t = string_t<'H','e','l','l','o',' ','w','o','r','l','d','!'>;

template <typename Name>
void print()
{
    //String as template parameter
    std::cout << Name::c_str();
}

int main() {
    std::cout << Hello_World_t::c_str() << std::endl;
    print<Hello_World_t>();
    return 0;
}

Was ich wirklich für c ++ 17 lieben würde, wäre das Gleiche (um Ansatz # 1 abzuschließen)

// for template <char...>
<"Text"> == <'T','e','x','t'>

Etwas sehr ähnliches gibt es bereits im Standard für templatierte benutzerdefinierte Literale, wie auch void-pointer erwähnt, jedoch nur für Ziffern. Bis dahin gibt es noch einen kleinen Trick, den Override-Bearbeitungsmodus zu verwenden

string_t<' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '>;

Wenn Sie sich nicht um das Makro kümmern, funktioniert dies (etwas modifiziert von Yankes Antwort):

#define MACRO_GET_1(str, i) \
(sizeof(str) > (i) ? str[(i)] : 0)

#define MACRO_GET_4(str, i) \
MACRO_GET_1(str, i+0),  \
MACRO_GET_1(str, i+1),  \
MACRO_GET_1(str, i+2),  \
MACRO_GET_1(str, i+3)

#define MACRO_GET_16(str, i) \
MACRO_GET_4(str, i+0),   \
MACRO_GET_4(str, i+4),   \
MACRO_GET_4(str, i+8),   \
MACRO_GET_4(str, i+12)

#define MACRO_GET_64(str, i) \
MACRO_GET_16(str, i+0),  \
MACRO_GET_16(str, i+16), \
MACRO_GET_16(str, i+32), \
MACRO_GET_16(str, i+48)

//CT_STR means Compile-Time_String
#define CT_STR(str) string_t<MACRO_GET_64(#str, 0), 0 >//guard for longer strings

print<CT_STR(Hello World!)>();
1
Niceman

die Lösung von kacey zum Erstellen eines einzigartigen Kompilierzeit-Typs kann mit geringfügigen Änderungen auch mit C++ 11 verwendet werden:

template <char... Chars>
struct string_t {};

namespace detail {
template <typename Str,unsigned int N,char... Chars>
struct make_string_t : make_string_t<Str,N-1,Str().chars[N-1],Chars...> {};

template <typename Str,char... Chars>
struct make_string_t<Str,0,Chars...> { typedef string_t<Chars...> type; };
} // namespace detail

#define CSTR(str) []{ \
    struct Str { const char *chars = str; }; \
    return detail::make_string_t<Str,sizeof(str)>::type(); \
  }()

Benutzen:

template <typename String>
void test(String) {
  // ... String = string_t<'H','e','l','l','o','\0'>
}

test(CSTR("Hello"));
1
smilingthax

Meine eigene Implementierung basiert auf einem Ansatz aus der Zeichenfolge Boost.Hana (Schablonenklasse mit variablen Zeichen), verwendet jedoch nur die Funktionen C++11 Standard und constexpr mit strenger Prüfung der Kompilierbarkeit (wäre eine Kompilierung) Zeitfehler, wenn kein Kompilierzeitausdruck vorhanden ist). Kann aus der üblichen rohen C-Zeichenfolge anstelle von {'a', 'b', 'c' } (über ein Makro) erstellt werden.

Implementierung: https://sourceforge.net/p/tacklelib/tacklelib/HEAD/tree/trunk/include/tacklelib/tackle/tmpl_string.hpp

Tests: https://sourceforge.net/p/tacklelib/tacklelib/HEAD/tree/trunk/src/tests/unit/test_tmpl_string.cpp

Anwendungsbeispiele:

const auto s0    = TACKLE_TMPL_STRING(0, "012");            // "012"
const char c1_s0 = UTILITY_CONSTEXPR_GET(s0, 1);            // '1'

const auto s1    = TACKLE_TMPL_STRING(0, "__012", 2);       // "012"
const char c1_s1 = UTILITY_CONSTEXPR_GET(s1, 1);            // '1'

const auto s2    = TACKLE_TMPL_STRING(0, "__012__", 2, 3);  // "012"
const char c1_s2 = UTILITY_CONSTEXPR_GET(s2, 1);            // '1'

// TACKLE_TMPL_STRING(0, "012") and TACKLE_TMPL_STRING(1, "012")
//   - semantically having different addresses.
//   So id can be used to generate new static array class field to store
//   a string bytes at different address.

// Can be overloaded in functions with another type to express the compiletimeness between functions:

template <uint64_t id, typename CharT, CharT... tchars>
const overload_resolution_1 & test_overload_resolution(const tackle::tmpl_basic_string<id, CharT, tchars...> &);
template <typename CharT>
const overload_resolution_2 & test_overload_resolution(const tackle::constexpr_basic_string<CharT> &);

// , where `constexpr_basic_string` is another approach which loses
//   the compiletimeness between function signature and body border,
//   because even in a `constexpr` function the compile time argument
//   looses the compiletimeness nature and becomes a runtime one.

Die Details zu einer constexpr Funktion kompilieren Zeitrahmen: https://www.boost.org/doc/libs/1_65_0/libs/hana/doc/html/index.html#tutorial-appendix- constexpr

Weitere Einzelheiten zur Verwendung finden Sie in den Tests.

Das gesamte Projekt ist derzeit experimentell.

0
Andry

Ich möchte der answer von @ user1115339 zwei kleine Verbesserungen hinzufügen. Ich habe sie in den Kommentaren zur Antwort erwähnt, aber der Einfachheit halber stelle ich hier eine Kopierlösung ein.

Der einzige Unterschied ist das FIXED_CSTRING-Makro, das die Verwendung der Zeichenfolgen in Klassenvorlagen und als Argument für den Indexoperator ermöglicht (nützlich, wenn Sie beispielsweise eine compiletime-Map haben).

Live-Beispiel .

namespace  variadic_toolbox
{
    template<unsigned  count, 
        template<unsigned...> class  meta_functor, unsigned...  indices>
    struct  apply_range
    {
        typedef  typename apply_range<count-1, meta_functor, count-1, indices...>::result  result;
    };

    template<template<unsigned...> class  meta_functor, unsigned...  indices>
    struct  apply_range<0, meta_functor, indices...>
    {
        typedef  typename meta_functor<indices...>::result  result;
    };
}

namespace  compile_time
{
    template<char...  str>
    struct  string
    {
        static  constexpr  const char  chars[sizeof...(str)+1] = {str..., '\0'};
    };

    template<char...  str>
    constexpr  const char  string<str...>::chars[sizeof...(str)+1];

    template<typename  lambda_str_type>
    struct  string_builder
    {
        template<unsigned... indices>
        struct  produce
        {
            typedef  string<lambda_str_type{}.chars[indices]...>  result;
        };
    };
}

#define  CSTRING(string_literal)                                                        \
    []{                                                                                 \
        struct  constexpr_string_type { const char * chars = string_literal; };         \
        return  variadic_toolbox::apply_range<sizeof(string_literal)-1,                 \
            compile_time::string_builder<constexpr_string_type>::produce>::result{};    \
    }()


#define  FIXED_CSTRING(string_literal)                                                        \
    ([]{                                                                                 \
        struct  constexpr_string_type { const char * chars = string_literal; };         \
        return  typename variadic_toolbox::apply_range<sizeof(string_literal)-1,                 \
            compile_time::string_builder<constexpr_string_type>::template produce>::result{};    \
    }())    

struct A {

    auto test() {
        return FIXED_CSTRING("blah"); // works
        // return CSTRING("blah"); // works too
    }

    template<typename X>
    auto operator[](X) {
        return 42;
    }
};

template<typename T>
struct B {

    auto test() {       
       // return CSTRING("blah");// does not compile
       return FIXED_CSTRING("blah"); // works
    }
};

int main() {
    A a;
    //return a[CSTRING("blah")]; // fails with error: two consecutive ' [ ' shall only introduce an attribute before ' [ ' token
    return a[FIXED_CSTRING("blah")];
}
0
florestan