wake-up-neo.net

Anhängen eines Vektors an einen Vektor

Angenommen, ich habe 2 Standardvektoren:

vector<int> a;
vector<int> b;

Sagen wir auch, dass beide ungefähr 30 Elemente haben.

  • Wie füge ich den Vektor b an das Ende von Vektor a an?

Der schmutzige Weg wäre, durch b zu iterieren und jedes Element über vector<int>::Push_back() hinzuzufügen, obwohl ich das nicht gerne tun würde!

603
sub
a.insert(a.end(), b.begin(), b.end());

oder

a.insert(std::end(a), std::begin(b), std::end(b));

Die zweite Variante ist eine allgemeinere Lösung, da b auch ein Array sein kann. Es erfordert jedoch C++ 11. Wenn Sie mit benutzerdefinierten Typen arbeiten möchten, verwenden Sie ADL:

using std::begin, std::end;
a.insert(end(a), begin(b), end(b));
1094
Andreas Brinck
std::copy (b.begin(), b.end(), std::back_inserter(a));

Dies kann verwendet werden, wenn die Elemente in Vektor a keinen Zuweisungsoperator haben (z. B. const member).

In allen anderen Fällen ist diese Lösung im Vergleich zu der obigen Insert-Lösung ineffektiv.

79
Sergei Kurenkov

Warum sollte man sich darauf verlassen, wenn man sagt, dass der Compiler reservieren kann? Und was ist mit der automatischen Erkennung der Bewegungssemantik? Und was ist mit all dem Wiederholen des Containernamens mit den begins und ends?

Würdest du nicht etwas einfacheres wollen?

(Scrollen Sie für die Pointe nach unten zu main)

#include <type_traits>
#include <vector>
#include <iterator>
#include <iostream>

template<typename C,typename=void> struct can_reserve: std::false_type {};

template<typename T, typename A>
struct can_reserve<std::vector<T,A>,void>:
    std::true_type
{};

template<int n> struct secret_enum { enum class type {}; };
template<int n>
using SecretEnum = typename secret_enum<n>::type;

template<bool b, int override_num=1>
using EnableFuncIf = typename std::enable_if< b, SecretEnum<override_num> >::type;
template<bool b, int override_num=1>
using DisableFuncIf = EnableFuncIf< !b, -override_num >;

template<typename C, EnableFuncIf< can_reserve<C>::value >... >
void try_reserve( C& c, std::size_t n ) {
  c.reserve(n);
}
template<typename C, DisableFuncIf< can_reserve<C>::value >... >
void try_reserve( C& c, std::size_t ) { } // do nothing

template<typename C,typename=void>
struct has_size_method:std::false_type {};
template<typename C>
struct has_size_method<C, typename std::enable_if<std::is_same<
  decltype( std::declval<C>().size() ),
  decltype( std::declval<C>().size() )
>::value>::type>:std::true_type {};

namespace adl_aux {
  using std::begin; using std::end;
  template<typename C>
  auto adl_begin(C&&c)->decltype( begin(std::forward<C>(c)) );
  template<typename C>
  auto adl_end(C&&c)->decltype( end(std::forward<C>(c)) );
}
template<typename C>
struct iterable_traits {
    typedef decltype( adl_aux::adl_begin(std::declval<C&>()) ) iterator;
    typedef decltype( adl_aux::adl_begin(std::declval<C const&>()) ) const_iterator;
};
template<typename C> using Iterator = typename iterable_traits<C>::iterator;
template<typename C> using ConstIterator = typename iterable_traits<C>::const_iterator;
template<typename I> using IteratorCategory = typename std::iterator_traits<I>::iterator_category;

template<typename C, EnableFuncIf< has_size_method<C>::value, 1>... >
std::size_t size_at_least( C&& c ) {
    return c.size();
}

template<typename C, EnableFuncIf< !has_size_method<C>::value &&
  std::is_base_of< std::random_access_iterator_tag, IteratorCategory<Iterator<C>> >::value, 2>... >
std::size_t size_at_least( C&& c ) {
    using std::begin; using std::end;
  return end(c)-begin(c);
};
template<typename C, EnableFuncIf< !has_size_method<C>::value &&
  !std::is_base_of< std::random_access_iterator_tag, IteratorCategory<Iterator<C>> >::value, 3>... >
std::size_t size_at_least( C&& c ) {
  return 0;
};

template < typename It >
auto try_make_move_iterator(It i, std::true_type)
-> decltype(make_move_iterator(i))
{
    return make_move_iterator(i);
}
template < typename It >
It try_make_move_iterator(It i, ...)
{
    return i;
}


#include <iostream>
template<typename C1, typename C2>
C1&& append_containers( C1&& c1, C2&& c2 )
{
  using std::begin; using std::end;
  try_reserve( c1, size_at_least(c1) + size_at_least(c2) );

  using is_rvref = std::is_rvalue_reference<C2&&>;
  c1.insert( end(c1),
             try_make_move_iterator(begin(c2), is_rvref{}),
             try_make_move_iterator(end(c2), is_rvref{}) );

  return std::forward<C1>(c1);
}

struct append_infix_op {} append;
template<typename LHS>
struct append_on_right_op {
  LHS lhs;
  template<typename RHS>
  LHS&& operator=( RHS&& rhs ) {
    return append_containers( std::forward<LHS>(lhs), std::forward<RHS>(rhs) );
  }
};

template<typename LHS>
append_on_right_op<LHS> operator+( LHS&& lhs, append_infix_op ) {
  return { std::forward<LHS>(lhs) };
}
template<typename LHS,typename RHS>
typename std::remove_reference<LHS>::type operator+( append_on_right_op<LHS>&& lhs, RHS&& rhs ) {
  typename std::decay<LHS>::type retval = std::forward<LHS>(lhs.lhs);
  return append_containers( std::move(retval), std::forward<RHS>(rhs) );
}

template<typename C>
void print_container( C&& c ) {
  for( auto&& x:c )
    std::cout << x << ",";
  std::cout << "\n";
};

int main() {
  std::vector<int> a = {0,1,2};
  std::vector<int> b = {3,4,5};
  print_container(a);
  print_container(b);
  a +append= b;
  const int arr[] = {6,7,8};
  a +append= arr;
  print_container(a);
  print_container(b);
  std::vector<double> d = ( std::vector<double>{-3.14, -2, -1} +append= a );
  print_container(d);
  std::vector<double> c = std::move(d) +append+ a;
  print_container(c);
  print_container(d);
  std::vector<double> e = c +append+ std::move(a);
  print_container(e);
  print_container(a);
}

hehe .

Jetzt mit Move-Data-From-RHS, Append-Array-To-Container, Append Forward_List-To-Container, Move-Container-From-LHS, dank der Hilfe von @ DyP.

Beachten Sie, dass das oben Genannte dank der EnableFunctionIf<>... -Technik nicht in Klänge kompiliert werden kann. In clang diese Problemumgehung funktioniert.

Wenn Sie sich selbst einen Vektor hinzufügen möchten, schlagen beide gängigen Lösungen fehl:

std::vector<std::string> v, orig;

orig.Push_back("first");
orig.Push_back("second");

// BAD:
v = orig;
v.insert(v.end(), v.begin(), v.end());
// Now v contains: { "first", "second", "", "" }

// BAD:
v = orig;
std::copy(v.begin(), v.end(), std::back_inserter(v));
// std::bad_alloc exception is generated

// GOOD, but I can't guarantee it will work with any STL:
v = orig;
v.reserve(v.size()*2);
v.insert(v.end(), v.begin(), v.end());
// Now v contains: { "first", "second", "first", "second" }

// GOOD, but I can't guarantee it will work with any STL:
v = orig;
v.reserve(v.size()*2);
std::copy(v.begin(), v.end(), std::back_inserter(v));
// Now v contains: { "first", "second", "first", "second" }

// GOOD (best):
v = orig;
v.insert(v.end(), orig.begin(), orig.end()); // note: we use different vectors here
// Now v contains: { "first", "second", "first", "second" }
27
Sergey